

COMMON PRE-BOARD EXAMINATION 2022-23

Subject: PHYSICS (042) Marking Scheme

Class: XII
Date:
Time: 3 Hours
Max. Marks: 70

Date:	Max. Mark	s: /0
	SECTION A	
1.	(c) the number of flux lines entering the surface must be equal to the number of flux lines leaving it.	1
2.	(a) 7.5×10^{-9} J	1
3.	(d) remains the same throughout the conductor.	1
4.	(a) Drift velocity	1
5.	(d) The electron will continue to move with uniform velocity along the axis of the solenoid	1
6.	(a) 5 mA	1
7.	(b) <i>l</i> decreases and A increases.	1
8.	(a) looking from above, the induced current in the coil will be anti-clockwise.	1
9.	(c) 14.4 W	1
10.	(b) another capacitor should be added in parallel to the first.	1
11.	$(a) \frac{E}{\sqrt{2}}$	1
12.	(d) 0.30 mm	1
13.	(b) $\lambda_{\alpha} < \lambda_{p} = \lambda_{n} > \lambda_{e}$	1
14.	$(c)\frac{20}{7}\lambda$	1
15.	(c) directly proportional to the cube root of its mass number	1
16.	(b) Both A and R are true but R is not the correct explanation of A.	1
17.	(d) A is false but R is true.	1
18.	(c) A is true but R is false.	1
	SECTION B	
19.	$\frac{kqQ}{x^2} = \frac{kqQ}{(r-x)^2} \rightarrow x = r/2$ $\frac{kqQ}{x^2} = \frac{kQQ}{r^2} \rightarrow q = \frac{Q}{4}$	1
	$ \frac{kqQ}{x^2} = \frac{kQQ}{r^2} \rightarrow q = \frac{Q}{4} $	1
20.	Diamagnetic in nature.	1
	Any three properties	11/2
21.	$\lambda = \frac{2\pi}{300\pi} = \frac{1}{150} = 6.6 \times 10^{-3} \text{m}$	1/2
	$B_z = 10^{-7} \sin(2 \times 10^{11} t + 300 \pi x) T$	1½
	OR	
	In microwave ovens, the frequency of the microwave is selected to match the resonant	
	frequency of water molecules so that energy from waves is transferred to the K.E of	2
	molecules which in turn increases the temperature of any food containing water	
22.	Focal length decreases	1
	$\frac{1}{c} \propto \mu$	1
	f ~ μ	

23.	$\frac{I_1}{I_2} = \frac{3}{I_1}$	1
	$ \frac{I_1}{I_2} = \frac{3}{2} \\ \frac{I_1}{I_2} = \frac{2}{1} $	1
	$\frac{1}{I_2} = \frac{1}{I}$	
24.	No, the binding energy of ³ He ₁ is greater	1/2
	³ He ₂ has two protons and one neutron and ³ He ₁ has one proton and two neutrons	11/2
	hence coulombs force between protons are absent.	
25.	When a p-n junction diode is forward biased, it offers less resistance and a current	1
	flow through it; but when it is reverse biased, it offers high resistance and almost no	
	current flows through it.	1
	Thus diode conducts in forward bias and does not conduct in reverse bias This	
	unidirectional property of a diode enables it to be used as a rectifier. SECTION C	
26.		1
20.	$V = I_g(G+R_1).$ (1) $\frac{V}{2} = I_g(G+R_2)$ (2)	1
	$\frac{1}{2} = I_g(G + R_2) \qquad \dots (2)$	
	$2 = \frac{G + R_1}{G + R_2} $ [(1) / (2)]	
	$G = R_1 - 2R_2$ (3)	
	Suppose R is the resistance in series for range 2V then	
	$2V = I_g(G+R) \qquad \dots (4)$	
	$2 = \frac{G + R}{G + R_1} [(1) / (2)]$	
	$R = G + 2R_1$	
	$R = R_1 - 2R_2 + 2R_1$ [from (3)]	2
	$R = 3R_1 - 2R_2$	_
27.	$N_1 \Phi_1 = M_{12} I_2$	1/2
	$n_1 l \cdot \mu_0 n_2 I_2 \cdot \pi r_1^2 = M_{12} I_2$	1/2
	$M_{12} = \mu_0 n_2 n_1 \pi r_1^2 l$	1/2
	$M = \mu_0 n_2 n_1 \pi r_1^2 l$	1/2
	Any two	1
28.	Root mean square value of alternating emf is defined as that value of steady voltage,	3
	which would generate the same amount of heat in a given resistance in a given time,	
	as is done by the alternating emf when applied to the same resistance for the same time	
	$\left \frac{V_{dc}^2}{R} T \right = \int_0^T \frac{V_{ac}^2}{R} dt$	
	$\begin{bmatrix} R & - J_0 & R \end{bmatrix}$	3
	$=\int_0^T \frac{{V_0}^2 \sin^2 \omega t}{R} dt$	
	O K	
	$\left \frac{V_{\rm rms}^2}{R} T \right = \frac{V_0^2}{2R} T$	
	$V_{rms} = \frac{V_0}{\sqrt{2}}$	
	OR	
	V _ 01 _ 12=f _ 2= ; ⁵⁰ = 1 1000	
	$X_{L} = \omega L = L2\pi f = 2\pi x \frac{50}{\pi} x 1 = 100\Omega$ $X_{C} = \frac{1}{\omega c} = \frac{1}{20 \times 10^{-6} \times 2\pi \times \frac{50}{\pi}} = 500\Omega$	
	$X_{\rm C} = \frac{1}{600} = \frac{1}{20 \times 10^{-6} \times 2\pi \times 50} = 500\Omega$	
	ως 20×10 ××2π×— π	

	50	
	$I_{\rm rms} = \frac{30}{\sqrt{(300)^2 + (500 - 100)^2}} = 0.1A$	
29.	eVo 	
	OR OR	
	κ /	1
	, , , o , o	
	w _o	
	Y- intercept of the graph gives work function W ₀ . It is different for different metal	
	Slope of the graph is planks constant h. It is constant. OR	$\begin{bmatrix} & 1 \\ & 1 \end{bmatrix}$
	$K = \frac{hc}{\lambda} - W_0 = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2000 \times 10^{-10} \times 1.6 \times 10^{-19}} - 4.2 = 6.2 - 4.2 = 2 \text{ eV}$	11/2
	When intensity changes kinetic energy does not change	1/2
20	$6.2 - 6.5 = 3 \text{ eV}$ $\frac{hc}{\lambda_1} = W_0 + eV_0 \& \frac{hc}{\lambda_2} = W_0 + 2eV_0$ $eV_0 = \frac{hc}{\lambda_1} - W_0 \& 2eV_0 = \frac{hc}{\lambda_2} - W_0$	1/2
30.	$\frac{\partial}{\partial x_1} = W_0 + eV_0 \qquad \& \qquad \frac{\partial}{\partial x_2} = W_0 + 2eV_0$	1/2
	$eV_0 = \frac{nc}{\lambda_1} - W_0$ & $2eV_0 = \frac{nc}{\lambda_2} - W_0$	1/2
	$\frac{hc}{\lambda_1} - W_0 = \frac{1}{2} \left[\frac{hc}{\lambda_2} - W_0 \right]$	1/2
	$W_0 = hc \left[\frac{2}{\lambda_1} - \frac{1}{\lambda_2} \right]$	/2
	$W_0 = hc \left[\frac{2}{\lambda_1} - \frac{1}{\lambda_2} \right]$ $\frac{hc}{\lambda_{\text{max}}} = hc \left[\frac{2}{\lambda_1} - \frac{1}{\lambda_2} \right]$	1/2
	$\lambda_{\max} = \frac{1}{\left[\frac{2}{\lambda_1} - \frac{1}{\lambda_2}\right]}$	1/2
	$\frac{1}{\lambda_1} \frac{\lambda_1}{\lambda_2}$ SECTION D	1/2
31.	SECTION D	1
	$E = \frac{\sigma}{\varepsilon_0} = \frac{q}{A \varepsilon_0}$	1
	$E = \frac{\sigma}{\varepsilon_0} = \frac{q}{A \varepsilon_0}$ $u = \frac{1}{2} \varepsilon_0 E^2 = \frac{1}{2} \varepsilon_0 \left[\frac{q}{A \varepsilon_0} \right]^2 = \frac{1}{2 \varepsilon_0} \left[\frac{q}{A} \right]^2$	
	$u \propto \frac{1}{\Delta^2}$	3
	Thus $u_A > u_B$	
	$C_1 C_2 = 6\mu X 6\mu$	
	$C_{12} = \frac{C_1 C_2}{C_1 + C_2} = \frac{6\mu X 6\mu}{6 + 6} = 3\mu F$	
	$q_{12} = C_{12}V = 3X10^{-6}X12 = 36X10^{-6}C = q_2 = q_2$ $q_3 = C_3V = 6X10^{-6}X12 = 72X10^{-6}C$	
	$C_{123} = C_{12} + C_3 = 3X10^{-6} + 6X10^{-6} = 9X10^{-6}F$	
	$U = \frac{1}{2}C_{123}V^2 = \frac{1}{2}X9X10^{-6}X(12)^2 = 6.48 X 10^{-4}J$	
	OR	

	→	1/2
	$ \xrightarrow{q} +q\bar{t} $	
	s sino	
	$ \xrightarrow{ \begin{array}{c} C \\ \hline C \\ C \\$	
	\rightarrow	
	$q^{E} \leftarrow q^{G} \longrightarrow 2a \cos\theta \longrightarrow$	
	Torque $\tau = F \perp^r$ distance	11/2
	$= q E 2a \sin \theta$	
	$= P E \sin \theta$	
	$\vec{\tau} = \vec{P} \times \vec{E}$	
	Direction of torque is perpendicular to the plane, containing dipole moment and	1
	electric field OR Torque tends to align dipole such that its moment lies along the	
	direction of external electric field [means bringing to equilibrium position]	
	$W = \int_{\theta_1}^{\theta_2} dW = \int_{\theta_1}^{\theta_2} PE \sin \theta \ d\theta$	2
	$= -PE \left[\cos \theta_2 - \cos \theta_1\right]$	
	$= -PE[\cos \theta - \cos 90]$	
	W. D. D.	
	$U = -\vec{P} \cdot \vec{E}$	
32.	$W = -P E \cos \theta$ $U = -\vec{P} \cdot \vec{E}$ $E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2} = \frac{1.5 \times 0.3 + 2 \times 0.2}{0.2 + 0.3} = 1.7V$ $r_{eq} = \frac{r_1 r_2}{r_1 + r_2} = \frac{0.2 \times 0.3}{0.3 + 0.3} = 0.12\Omega$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
	11+12 0.2+0.3	
	$\frac{R_1}{R_5} = \frac{R_4}{R_3} \to \frac{1}{2} = \frac{1}{2}$	
	$R_{15} = 1 + 2 = 3\Omega$	
	$R_{43}=2+4=6\Omega$	
	$R_{\rm P} = \frac{3 \times 6}{3 + 6} = 2\Omega$	
	$I = \frac{V}{R_P} = \frac{4}{2} = 2A$	
	1	3
	OR	2
	$V = E - I r$ then $I = \frac{E_1 - V_1}{I} = \frac{E_1 - V_2}{I}$	
	$v_1 - E_1 - I_1 I_1$ then $I_1 - \frac{1}{r_1} - \frac{1}{r_1}$	
	$V_1 = E_1 - I_1 r_1 \text{ then } I_1 = \frac{E_1 - V_1}{r_1} = \frac{E_1 - V}{r_1}$ $V_2 = E_2 - I_2 r_2 \text{ then } I_2 = \frac{E_2 - V_2}{r_2} = \frac{E_2 - V}{r_2}$	
	$I = I_1 + I_2 = \frac{E_1 - V}{r_1} + \frac{E_2 - V}{r_2} = \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$	
	$V = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2} - I \frac{r_1 r_2}{r_1 + r_2} = E_{eq} - I r_{eq}$	
	$\mathbf{v} = \frac{\mathbf{r}_1 + \mathbf{r}_2}{\mathbf{r}_1 + \mathbf{r}_2} = \mathbf{E}_{eq} = \mathbf{H}_{eq}$	
	$E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$	
	r_1+r_2	2
	$r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$	2
	$\frac{E_{\text{eq}}}{r} = \frac{E_1}{r} + \frac{E_2}{r} + \cdots + \frac{E_n}{r}$	
	$r_{eq} - r_1 - r_2 - \cdots - r_n$ $\frac{1}{r_{eq}} = \frac{1}{r_{eq}} + \frac{1}{r_{eq}} + \cdots + \frac{1}{r_{eq}}$	
	$\left \frac{1}{n} \right = \frac{1}{n} + \frac{1}{n} + \cdots + \frac{1}{n}$	
	r_{eq} r_1 r_2 r_n	

	$\frac{1}{r_{eq}} = \frac{1}{r} + \frac{1}{r} + \dots + \frac{1}{r} = \frac{n}{r}$	2
	$r_{eq} = \frac{r}{n}$	
	Fog F nF	
	$I = \frac{E_{eq}}{R + r_{eq}} = \frac{E}{R + \frac{r}{n}} = \frac{nE}{nR + r}$	
	KTI eq K+— IIKTI	1
33.	a) $m = \frac{-140}{5} = -28$	1
		1
	b) $m = \frac{-140}{5} \left[1 + \frac{5}{25} \right] = -33.6$	1
	c) Separation = $140 + 5 = 145$ cm	1 1
	d) $\alpha = \frac{1}{30} \text{ rad}$ & $h = \frac{140}{30} = 4.67 \text{ cm}$	1
	30 30 30	
	e) $m_e = 1 + \frac{5}{25}$ h' = $\frac{140}{30}$ X 6 = 28 cm	
	OR	
	EYEPIECE	
	B" HO FO	1
	$\begin{array}{c} u_{\circ} \\ \\ \\ \\ \\ \end{array}$	
	În a EVE	
	Objective:- It is a convex lens of short focal length and small aperture	
	Eyepiece:- It is a convex lens of comparatively larger focal length and larger aperture	1
	Diagram	
	$m = \frac{\tan \beta}{\tan \alpha} = \frac{h^{I}}{h} \frac{D}{u_{e}} = m_{o} m_{e} = \frac{v_{o}}{u_{o}} (1 + \frac{D}{f_{e}}) = \frac{-L}{f_{o}} (1 + \frac{D}{f_{e}})$	3
	SECTION E	
34.	a) Two conditions	2
	b) $\frac{\sin i}{\sin 30^{\circ}} = \sqrt{3}$ hence $i = 60^{\circ}$	1
	c) Violet	
	OR	1
	Directional proportional	
35.		1
	b) $R = \frac{V_{\text{cell}} - V_{\text{Diode}}}{I} = \frac{1.5 - 0.5}{5 \times 10^{-3}} = 200\Omega$	1
	c) P-type + N type	
	OR	1+1
	Forward + Reverse	
