COMMON PRE-BOARD EXAMINATION 2022-23

Subject: PHYSICS (042) Marking Scheme
Time: 3 Hours
Max. Marks: 70

Date:

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{SECTION A} \\
\hline 1. \& (c) the number of flux lines entering the surface must be equal to the number of flux lines leaving it. \& 1 \\
\hline 2. \& (a) \(7.5 \times 10^{-9}\) J \& 1 \\
\hline 3. \& (d) remains the same throughout the conductor. \& 1 \\
\hline 4. \& (a) Drift velocity \& 1 \\
\hline 5. \& (d) The electron will continue to move with uniform velocity along the axis of the solenoid \& 1 \\
\hline 6. \& (a) 5 mA \& 1 \\
\hline 7. \& (b) \(l\) decreases and A increases. \& 1 \\
\hline 8. \& (a) looking from above, the induced current in the coil will be anti-clockwise. \& 1 \\
\hline 9. \& (c) 14.4 W \& 1 \\
\hline 10. \& (b) another capacitor should be added in parallel to the first. \& 1 \\
\hline 11. \& \[
\text { (a) } \frac{E}{\sqrt{2}}
\] \& 1 \\
\hline 12. \& (d) 0.30 mm \& 1 \\
\hline 13. \& (b) \(\lambda_{\alpha}<\lambda_{p}=\lambda_{n}>\lambda_{e}\) \& 1 \\
\hline 14. \& (c) \(\frac{20}{7} \lambda\) \& 1 \\
\hline 15. \& (c) directly proportional to the cube root of its mass number \& 1 \\
\hline 16. \& (b) Both A and R are true but R is not the correct explanation of A . \& 1 \\
\hline 17. \& (d) A is false but R is true. \& 1 \\
\hline 18. \& (c) A is true but R is false. \& 1 \\
\hline \multicolumn{3}{|c|}{SECTION B} \\
\hline 19. \& \[
\begin{aligned}
\& \frac{\mathrm{kqQ}}{\mathrm{x}^{2}}=\frac{\mathrm{kqQ}}{(\mathrm{r}-\mathrm{x})^{2}} \rightarrow \mathrm{x}=\mathrm{r} / 2 \\
\& \frac{\mathrm{kqQ}}{\mathrm{x}^{2}}=\frac{\mathrm{kQQ}}{\mathrm{r}^{2}} \rightarrow \mathrm{q}=\frac{\mathrm{Q}}{4}
\end{aligned}
\] \& 1 \\
\hline 20. \& \begin{tabular}{l}
Diamagnetic in nature. \\
Any three properties
\end{tabular} \& \[
\begin{gathered}
\hline 1 \\
11 / 2
\end{gathered}
\] \\
\hline 21. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \lambda=\frac{2 \pi}{300 \pi}=\frac{1}{150}=6.6 \times 10^{-3} \mathrm{~m} \\
\& \mathrm{~B}_{z}=10^{-7} \sin \left(2 \times 10^{11} \mathrm{t}+300 \pi \mathrm{x}\right) \mathrm{T}
\end{aligned}
\] \\
OR \\
In microwave ovens, the frequency of the microwave is selected to match the resonant frequency of water molecules so that energy from waves is transferred to the K.E of molecules which in turn increases the temperature of any food containing water
\end{tabular} \& \(1 / 2\)
\(11 / 2\)

2

\hline 22. \& Focal length decreases $\frac{1}{f} \propto \mu$ \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 23. \& \[
\begin{aligned}
\& \frac{1}{1} \frac{3}{I_{2}}=\frac{3}{2} \\
\& \frac{1}{1}=\frac{2}{I_{2}}=\frac{2}{1}
\end{aligned}
\] \& \\
\hline 24. \& \begin{tabular}{l}
No, the binding energy of \({ }^{3} \mathrm{He}_{1}\) is greater \\
\({ }^{3} \mathrm{He}_{2}\) has two protons and one neutron and \({ }^{3} \mathrm{He}_{1}\) has one proton and two neutrons hence coulombs force between protons are absent.
\end{tabular} \& \[
\begin{gathered}
1 / 2 \\
11 / 2
\end{gathered}
\] \\
\hline 25. \& \begin{tabular}{l}
When a p-n junction diode is forward biased, it offers less resistance and a current flow through it; but when it is reverse biased, it offers high resistance and almost no current flows through it. \\
Thus diode conducts in forward bias and does not conduct in reverse bias This unidirectional property of a diode enables it to be used as a rectifier.
\end{tabular} \& 1
1 \\
\hline \multicolumn{3}{|c|}{SECTION C} \\
\hline 26. \& \begin{tabular}{l}
\[
\begin{align*}
\& V=I_{g}\left(G+R_{1}\right) . \\
\& \frac{v}{2}=I_{g}\left(G+R_{2}\right) \tag{2}\\
\& 2=\frac{G+R_{1}}{G+R_{2}} \\
\& G=R_{1}-2 R_{2}
\end{align*}
\] \\
Suppose R is the resistance in series for range 2 V then
\[
2 \mathrm{~V}=\mathrm{I}_{\mathrm{g}}(\mathrm{G}+\mathrm{R})
\]
\[
\begin{aligned}
\& 2=\frac{\mathrm{G}+\mathrm{R}}{\mathrm{G}+\mathrm{R}_{1}}[(1) /(2)] \\
\& \mathrm{R}=\mathrm{G}+2 \mathrm{R}_{1}
\end{aligned}
\]
\[
\mathrm{R}=\mathrm{R}_{1}-2 \mathrm{R}_{2}+2 \mathrm{R}_{1}
\]
\[
\mathrm{R}=3 \mathrm{R}_{1}-2 \mathrm{R}_{2}
\]
\end{tabular} \& 2 \\
\hline 27. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{N}_{1} \Phi_{1}=\mathrm{M}_{12} \mathrm{I}_{2} \\
\& \mathrm{n}_{1} l \cdot \mu_{0} \mathrm{n}_{2} \mathrm{I}_{2} \cdot \Pi r_{1}^{2}=\mathrm{M}_{12} \mathrm{I}_{2} \\
\& \mathrm{M}_{12}=\mu_{0} \mathrm{n}_{2} \mathrm{n}_{1} \Pi r_{1}{ }^{2} l \\
\& \mathrm{M} \quad=\mu_{0} \mathrm{n}_{2} \mathrm{n}_{1} \Pi r_{1}{ }^{2} l
\end{aligned}
\] \\
Any two
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1 \\
\hline 28. \& \begin{tabular}{l}
Root mean square value of alternating emf is defined as that value of steady voltage, which would generate the same amount of heat in a given resistance in a given time, as is done by the alternating emf when applied to the same resistance for the same time
\[
\begin{aligned}
\& \frac{\mathrm{V}_{\mathrm{dc}}{ }^{2}}{\mathrm{R}} \mathrm{~T}=\int_{0}^{\mathrm{T}} \frac{\mathrm{~V}_{\mathrm{ac}}{ }^{2}}{\mathrm{R}} \mathrm{dt} \\
\&=\int_{0}^{\mathrm{T}} \frac{\mathrm{~V}_{0}{ }^{2} \sin ^{2} \omega \mathrm{t}}{\mathrm{R}} \mathrm{dt} \\
\& \frac{\mathrm{~V}_{\mathrm{rms}}{ }^{2}}{\mathrm{R}} \mathrm{~T}=\frac{\mathrm{V}_{0}{ }^{2}}{2 \mathrm{R}} \mathrm{~T} \\
\& \mathrm{~V}_{r m s}=\frac{\mathrm{V}_{0}}{\sqrt{2}}
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=\mathrm{L} 2 \pi \mathrm{f}=2 \pi \times \frac{50}{\pi} \times 1=100 \Omega \\
\& \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{c}}=\frac{1}{20 \times 10^{-6} \times 2 \pi \times \frac{50}{\pi}}=500 \Omega
\end{aligned}
\]
\end{tabular} \& 3

3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\mathrm{I}_{\mathrm{rms}}=\frac{50}{\sqrt{(300)^{2}+(500-100)^{2}}}=0.1 \mathrm{~A}
\] \& \\
\hline 29. \& \begin{tabular}{l}
 \\
Y - intercept of the graph gives work function \(\mathrm{W}_{0}\). It is different for different metal Slope of the graph is planks constant \(h\). It is constant. \\
OR
\[
\mathrm{K}=\frac{\mathrm{hc}}{\lambda}-\mathrm{W}_{0}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2000 \times 10^{-10} \times 1.6 \times 10^{-19}}-4.2=6.2-4.2=2 \mathrm{eV}
\] \\
When intensity changes kinetic energy does not change
\[
6.2-6.5=3 \mathrm{eV}
\]
\end{tabular} \& 1

1
1
$11 / 2$
$1 / 2$
1

\hline 30. \& $$
\begin{aligned}
& \frac{\mathrm{hc}}{\lambda_{1}}=\mathrm{W}_{0}+\mathrm{eV}_{0} \quad \& \quad \frac{\mathrm{hc}}{\lambda_{2}}=\mathrm{W}_{0}+2 \mathrm{eV}_{0} \\
& \mathrm{eV}_{0}=\frac{\mathrm{hc}}{\lambda_{1}}-\mathrm{W}_{0} \quad \& \quad 2 \mathrm{eV}_{0}=\frac{\mathrm{hc}}{\lambda_{2}}-\mathrm{W}_{0} \\
& \frac{\mathrm{hc}}{\lambda_{1}}-\mathrm{W}_{0} \quad=\frac{1}{2}\left[\frac{\mathrm{hc}}{\lambda_{2}}-\mathrm{W}_{0}\right] \\
& \mathrm{W}_{0}=\mathrm{hc}\left[\frac{2}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right] \\
& \frac{\mathrm{hc}}{\lambda_{\max }}=\mathrm{hc}\left[\frac{2}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right] \\
& \lambda_{\max }=\frac{1}{\left[\frac{2}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right]}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

\hline \multicolumn{3}{|c|}{SECTION D}

\hline 31. \& | $\begin{aligned} & \mathrm{E}=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{A \varepsilon_{0}} \\ & \mathrm{u}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}=\frac{1}{2} \varepsilon_{0}\left[\frac{\mathrm{q}}{\mathrm{~A} \varepsilon_{0}}\right]^{2}=\frac{1}{2 \varepsilon_{0}}\left[\frac{\mathrm{q}}{\mathrm{~A}}\right]^{2} \\ & \mathrm{u} \propto \frac{1}{\mathrm{~A}^{2}} \end{aligned}$ |
| :--- |
| Thus $\mathrm{u}_{\mathrm{A}}>\mathrm{u}_{\mathrm{B}}$ $\begin{aligned} & \mathrm{C}_{12}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{6 \mu \mathrm{X} 6 \mu}{6+6}=3 \mu \mathrm{~F} \\ & \mathrm{q}_{12}=\mathrm{C}_{12} \mathrm{~V}=3 \times 10^{-6} \mathrm{X} 12=36 \times 10^{-6} \mathrm{C}=\mathrm{q}_{2}=\mathrm{q}_{2} \\ & \mathrm{q}_{3}=\mathrm{C}_{3} \mathrm{~V}=6 \mathrm{X} 10^{-6} \mathrm{X} 12=72 \mathrm{X} 10^{-6} \mathrm{C} \\ & \mathrm{C}_{123} \mathrm{C}_{12} \mathrm{C}_{3}=3 \mathrm{X} 10^{-6}+6 \times 10^{-6}=9 \mathrm{X} 10^{-6} \mathrm{~F} \\ & \mathrm{U}=\frac{1}{2} \mathrm{C}_{123} \mathrm{~V}^{2}=\frac{1}{2} \mathrm{X} 9 \times 10^{-6} \mathrm{X}(12)^{2}=6.48 \times 10^{-4} \mathrm{~J} \end{aligned}$ | \& 1

1

3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Torque
\[
\begin{aligned}
\tau \& =\mathrm{F} \perp^{\mathrm{r}} \text { distance } \\
\& =\mathrm{qE} 2 \mathrm{a} \sin \theta \\
\& =\mathrm{PE} \sin \theta
\end{aligned}
\]
\[
\vec{\tau}=\vec{P} \times \vec{E}
\] \\
Direction of torque is perpendicular to the plane, containing dipole moment and electric field OR Torque tends to align dipole such that its moment lies along the direction of external electric field [means bringing to equilibrium position]
\[
\begin{aligned}
\mathrm{W} \& =\int_{\theta_{1}}^{\theta_{2}} \mathrm{dW}=\int_{\theta_{1}}^{\theta_{2}} \mathrm{PE} \sin \theta \mathrm{~d} \theta \\
\& =-\mathrm{PE}\left[\cos \theta_{2}-\cos \theta_{1}\right] \\
\& =-\mathrm{PE}[\cos \theta-\cos 90] \\
\mathrm{W} \& =-\mathrm{PE} \cos \theta \\
\mathrm{U} \& =-\overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{E}}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$11 / 2$

1
1
2

\hline 32. \& \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \frac{1}{r_{e q}}=\frac{1}{r}+\frac{1}{r}+\cdots+\frac{1}{r}=\frac{n}{r} \\
\& r_{e q}=\frac{r}{n} \\
\& I=\frac{E_{e q}}{R+r_{e q}}=\frac{E}{R+\frac{r}{n}}=\frac{n E}{n R+r}
\end{aligned}
\] \& 2
1 \\
\hline 33. \& \begin{tabular}{l}
a) \(m=\frac{-140}{5}=-28\) \\
b) \(m=\frac{-140}{5}\left[1+\frac{5}{25}\right]=-33.6\) \\
c) Separation \(=140+5=145 \mathrm{~cm}\) \\
d) \(\alpha=\frac{1}{30} \mathrm{rad} \quad \& \mathrm{~h}=\frac{140}{30}=4.67 \mathrm{~cm}\) \\
e) \(\mathrm{m}_{\mathrm{e}}=1+\frac{5}{25} \quad \mathrm{~h}^{\prime}=\frac{140}{30} \times 6=28 \mathrm{~cm}\) \\
OR \\
Objective:- It is a convex lens of short focal length and small aperture \\
Eyepiece:- It is a convex lens of comparatively larger focal length and larger aperture \\
Diagram
\[
\mathrm{m}=\frac{\tan \beta}{\tan \alpha}=\frac{\mathrm{h}^{\mathrm{I}}}{\mathrm{~h}} \frac{\mathrm{D}}{\mathrm{u}_{\mathrm{e}}}=\mathrm{m}_{\mathrm{o}} \mathrm{~m}_{\mathrm{e}}=\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{u}_{\mathrm{o}}}\left(1+\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}\right)=\frac{-\mathrm{L}}{\mathrm{f}_{\mathrm{o}}}\left(1+\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}\right)
\]
\end{tabular} \& 1
1
1
1
1

1
1
1
3

\hline \& SECTION E \&

\hline 34. \& | a) Two conditions |
| :--- |
| b) $\frac{\sin \mathrm{i}}{\sin 30^{\circ}}=\sqrt{3}$ hence $\mathrm{i}=60^{\circ}$ |
| c) Violet |
| OR |
| Directional proportional | \& 2

1
1

\hline 35. \& | a) Decreases |
| :--- |
| b) $\mathrm{R}=\frac{\mathrm{V}_{\text {cell }}-\mathrm{V}_{\text {Diode }}}{\mathrm{I}}=\frac{1.5-0.5}{5 \times 10^{-3}}=200 \Omega$ |
| c) P-type $+N$ type |
| OR |
| Forward + Reverse | \& 1

1
$1+1$

\hline
\end{tabular}

